發明
中華民國
110117000
I 780700
極紫外光光譜橢偏儀
國立清華大學
2022/10/11
紅外光及可見光橢偏儀測量裝置已廣泛地應用於量測薄膜厚度。現今紅外光及可見光橢偏儀依賴精準的偏振計來量測樣品反射光或透射光的偏振變化,藉由分析光偏振的變化,橢偏儀可取得薄膜膜厚的訊息,包括從微米至奈米等級的膜厚。因波長短、光子能量高的極紫外光橢偏儀可獲得更薄的膜厚,而使用寬頻極紫外光能取得大量的基本物理特性,例如折射率,能帶結構等。故具能量解析的紫外光橢偏儀將成為學界及業界不可或缺的設備。然而,極紫外光已為半導體界主要用於大量生產晶片的光源,如何精確提供極紫外光偏振特性為接下來在紫外光譜區中重要的關鍵技術。【1】 由於極紫外光與紅外光及可見光的特性大不相同,其可被任何材料吸收,在光譜中,極紫外光與軟X光區域中沒有高透射率的元件,例如波片或偏振片,這使得在橢偏儀建置上有很大的難度。本揭示內容提出一新量測極紫外光極化特性的量測裝置,取得橢圓率、旋性方向、傾斜角以及極化光比例等光學極化資訊。 Recently, generation and application of Extreme Ultraviolet (EUV) is getting more important in the related industry, and people would like to obtain complete optical characteristics of EUV for lithography as well as resolving the chirality and magnetization of elements and materials. Nowadays, measuring device, such as ellipsometer has been used widely to film thickness for single layers or complex multilayer stacks ranging from a few angstroms or tenths of a nanometer to several micrometers with excellent accuracy. How to precisely characterize EUV polarization is the crucial technique for the next generation spectroscopic ellipsometry in the ultraviolet spectral region, since polarized EUV has become the primary light source for the next generation high-volume manufacturing of semiconductor device. Ellipsometer relies on a precise polarimeter that measures the change of polarization upon reflection or transmission of samples. Based on the analysis of the change of polarization of light, ellipsometry can yield information about layers that are thinner than the wavelength of the probing light itself, even down to a single atomic layer. Further, an energy-resolved EUV polarimeter, which precisely characterizes the polarization of EUV light as a function of the light's wavelength or energy (spectra), becomes an essential apparatus. However, the characterization of EUV polarization is very challenging. Unlike light in the IR and visible region, EUV light is highly absorbed by any materials. There are no high-transmission elements, e.g., wave-plates, and polarizers, in the EUV and soft X-ray region of the spectrum. The next-generation surface characterization will highly rely on EUV light. Spectroscopic ellipsometry will employ broadband EUV light sources, which access to a large number of fundamental physical properties, for instance, the refractive index, band-to-band transitions, or electronic properties. Hence, a measuring device which can measure more complete characterization of EUV polarization, such as the helicity, the ellipticity, the tilt angle, and the degree of polarization are needed in the related industry.
智財技轉組
03-5715131-62219
版權所有 © 國家科學及技術委員會 National Science and Technology Council All Rights Reserved.
建議使用IE 11或以上版本瀏覽器,最佳瀏覽解析度為1024x768以上|政府網站資料開放宣告
主辦單位:國家科學及技術委員會 執行單位:台灣經濟研究院 網站維護:台灣經濟研究院