發明
中華民國
111124343
I 796251
穩健預測模型的建立方法、預測系統及阿茲海默症預測系統
高雄醫學大學
2023/03/11
一種穩健預測模型的建立方法,用以解決習知預測模型在資料缺失時無法產生穩健且可信的預測結果的問題。係包含:依據多個樣本的模態的每一種,分別獲取預建立單一模態標準模型;自具有多種模態的樣本中取出具有相同數種模態的模態組合,以建立對應的多模態標準模型;自該樣本中同時具有完整模態者取出多種模態組合作為訓練資料,所述訓練資料中的模態組合可區分為單一模態、多模態及完整模態訓練資料;將上述訓練資料輸入至一待訓練的預測模型,並運用前述單一模態及多模態標準模型修正該待訓練的預測模型,以獲取一經訓練的預測模型。 A method for establishing robust prediction model is adapted for solving the problem that the conventional prediction model cannot generate stable and credible results with missing data. The method of the present invention includes the following steps: obtaining pre-established single-modality standard models respectively based on each type of modalities from samples; extracting modality sets each having the same modality types from the samples to establish corresponding multi-modality standard models; extracting multiple combinations of the modality sets from the samples having complete modalities to be training data, wherein the multiple combinations of the modality sets can be classified into single-modality, multi-modality and complete-modality; inputting said training data into a prediction model to be trained, and modifying the prediction model by said single-modality standard models and said multi - modality standard models to obtain a well -trained prediction model.
智財保護與科技管理組
07-3138030
版權所有 © 國家科學及技術委員會 National Science and Technology Council All Rights Reserved.
建議使用IE 11或以上版本瀏覽器,最佳瀏覽解析度為1024x768以上|政府網站資料開放宣告
主辦單位:國家科學及技術委員會 執行單位:台灣經濟研究院 網站維護:台灣經濟研究院