發明
中華民國
109104583
I 767188
基於電腦斷層成像分析腦組織成分的系統及其運作方法
臺北醫學大學
2022/06/11
近年來國人腦中風發生率與死亡率居高不下,一直佔國人十大死因前三位。臨床上發現腦 部血管梗塞與中風息息相關且普遍存在於急性梗塞性腦中風病患。目前醫院使用軟體輔助 之半自動分割腦梗塞區域,處理與分析耗時過久且較容易產生不同量測者之偏差。大部分 的軟體也都是運用在拍攝時間較久且成本較高MRI 影像上,本專利開發急性缺血性腦中風 患者之電腦斷層影像上梗塞區域的偵測,藉助神經影像影像後處理與統計分析發展新穎的 腦梗塞區域偵測的方法,此方法能在臨床上更有效率的輔助醫師在電腦斷層影像上的診 斷。 Cerebral infarction (CI) refers to necrosis of brain tissue due to a blockage of cerebral blood vessels. This study aimed at the development of a method for detecting the presence and location of acute CI on computed tomographic (CT) images. Currently, available software algorithms mostly detect CI on magnetic resonance images (MRI), the acquisition of which is time-consuming and costly. On the other hand, the published CI detection algorithms on CT images are limited to whole-brain classification function without being able to pinpoint the location of CIs. In this study, the new algorithm is developed with the application of the deep learning method. CT images from acute ischemic stroke patients and healthy subjects were collected and preprocessed and then used to train the artificial neural network for the developed algorithm. This algorithm provides a facile way for physicians to diagnose CI from low-cost CT images. It could enhance clinical efficiency in the diagnosis and treatment of cerebrovascular diseases.
技術移轉中心
02-6638-2736-2006
版權所有 © 國家科學及技術委員會 National Science and Technology Council All Rights Reserved.
建議使用IE 11或以上版本瀏覽器,最佳瀏覽解析度為1024x768以上|政府網站資料開放宣告
主辦單位:國家科學及技術委員會 執行單位:台灣經濟研究院 網站維護:台灣經濟研究院