發明
中華民國
110126784
I 779732
使用多智能體遷移式強化學習的再生能源競價方法
國立清華大學
2022/10/01
【中文】 一種再生能源競價方法,其包括下列步驟:使用包括各能源供應端的供應量與多個能源需求端的總需求量的參與狀態作為輸入並使用能源供應端的售電報價作為輸出建構參與者網路;使用包括參與狀態、下一參與狀態及採用售電報價所獲得收益的評價狀態作為輸入並使用價值函數作為輸出建構評價者網路;透過隨機梯度下降法更新評價者網路的參數以最小化時序差分誤差;透過隨機梯度上升法更新參與者網路的參數以最大化能源供應端累積的收益;及將更新後參與者網路的參數遷移式轉移至新能源供應端,並重複上述更新步驟以最大化新能源供應端累積的收益。 【英文】 A method for renewable energy bidding is provided. In the method, an actor network is created by using an actor state including a supply amount of each energy supplier and a total demand amount of multiple energy demanders as an input and using an electricity sale quotation of the energy supplier as an output. A critic network is created by using a critic state including the actor state, a next actor state and a reward obtained by adopting the electricity sale quotation as an input and using a value function as an output. Parameters of the critic network are updated through stochastic gradient descent to minimize a temporal difference error. Parameters of the actor network are updated through stochastic gradient ascent to maximize the reward accumulated by the energy supplier. The updated parameters of the actor network are transferred to a new energy supplier and the aforesaid updating steps are repeated to maximize the reward accumulated by the new energy supplier.
智財技轉組
03-5715131-62219
版權所有 © 國家科學及技術委員會 National Science and Technology Council All Rights Reserved.
建議使用IE 11或以上版本瀏覽器,最佳瀏覽解析度為1024x768以上|政府網站資料開放宣告
主辦單位:國家科學及技術委員會 執行單位:台灣經濟研究院 網站維護:台灣經濟研究院